首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41071篇
  免费   741篇
  国内免费   345篇
测绘学   1287篇
大气科学   3053篇
地球物理   8284篇
地质学   13569篇
海洋学   3607篇
天文学   10078篇
综合类   113篇
自然地理   2166篇
  2021年   323篇
  2020年   361篇
  2019年   447篇
  2018年   972篇
  2017年   898篇
  2016年   1172篇
  2015年   663篇
  2014年   1113篇
  2013年   2010篇
  2012年   1218篇
  2011年   1610篇
  2010年   1467篇
  2009年   2024篇
  2008年   1780篇
  2007年   1802篇
  2006年   1690篇
  2005年   1271篇
  2004年   1297篇
  2003年   1183篇
  2002年   1226篇
  2001年   1084篇
  2000年   962篇
  1999年   836篇
  1998年   829篇
  1997年   826篇
  1996年   640篇
  1995年   652篇
  1994年   610篇
  1993年   534篇
  1992年   464篇
  1991年   478篇
  1990年   448篇
  1989年   471篇
  1988年   422篇
  1987年   489篇
  1986年   442篇
  1985年   524篇
  1984年   641篇
  1983年   557篇
  1982年   550篇
  1981年   497篇
  1980年   435篇
  1979年   422篇
  1978年   438篇
  1977年   375篇
  1976年   335篇
  1975年   342篇
  1974年   321篇
  1973年   362篇
  1972年   252篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
Tim P. Duval 《水文研究》2019,33(11):1510-1524
Partitioning of rainfall through a forest canopy into throughfall, stemflow, and canopy interception is a critical process in the water cycle, and the contact of precipitation with vegetated surfaces leads to increased delivery of solutes to the forest floor. This study investigates the rainfall partitioning over a growing season through a temperate, riparian, mixed coniferous‐deciduous cedar swamp, an ecosystem not well studied with respect to this process. Seasonal throughfall, stemflow, and interception were 69.2%, 1.5%, and 29.3% of recorded above‐canopy precipitation, respectively. Event throughfall ranged from a low of 31.5 ± 6.8% for a small 0.8‐mm event to a high of 82.9 ± 2.4% for a large 42.7‐mm event. Rain fluxes of at least 8 mm were needed to generate stemflow from all instrumented trees. Most trees had funnelling ratios <1.0, with an exponential decrease in funnelling ratio with increasing tree size. Despite this, stand‐scale funnelling ratios averaged 2.81 ± 1.73, indicating equivalent depth of water delivered across the swamp floor by stemflow was greater than incident precipitation. Throughfall dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) averaged 26.60 ± 2.96 and 2.02 ± 0.16 mg L?1, respectively, which were ~11 and three times above‐canopy rain levels. Stemflow DOC averaged 73.33 ± 7.43 mg L?1, 35 times higher than precipitation, and TDN was 4.45 ± 0.56 mg L?1, 7.5 times higher than rain. Stemflow DOC concentration was highest from Populus balsamifera and TDN greatest from Thuja occidentalis trees. Although total below‐canopy flux of TDN increased with increasing event size, DOC flux was greatest for events 20–30 mm, suggesting a canopy storage threshold of DOC was readily diluted. In addition to documenting rainfall partitioning in a novel ecosystem, this study demonstrates the excess carbon and nitrogen delivered to riparian swamps, suggesting the assimilative capacity of these zones may be underestimated.  相似文献   
62.
Seasonal snowpacks in marginal snow environments are typically warm and nearly isothermal, exhibiting high inter‐ and intra‐annual variability. Measurements of snow depth and snow water equivalent were made across a small subalpine catchment in the Australian Alps over two snow seasons in order to investigate the extent and implications of snowpack spatial variability in this marginal setting. The distribution and dynamics of the snowpack were found to be influenced by upwind terrain, vegetation, solar radiation, and slope. The role of upwind vegetation was quantified using a novel parameter based on gridded vegetation height. The elevation range of the catchment was relatively modest (185 m), and elevation impacted distribution but not dynamics. Two characteristic features of marginal snowpack behaviour are presented. Firstly, the evolution of the snowpack is described in terms of a relatively unstable accumulation state and a highly stable ablation state, as revealed by temporal variations in the mean and standard deviation of snow water equivalent. Secondly, the validity of partitioning the snow season into distinct accumulation and ablation phases is shown to be compromised in such a setting. Snow at the most marginal locations may undergo complete melt several times during a season and, even where snow cover is more persistent, ablation processes begin to have an effect on the distribution of the snowpack early in the season. Our results are consistent with previous research showing that individual point measurements are unable to fully represent the variability in the snowpack across a catchment, and we show that recognising and addressing this variability are particularly important for studies in marginal snow environments.  相似文献   
63.
A conceptual model of anisotropic and dynamic permeability is developed from hydrogeologic and hydromechanical characterization of a foliated, complexly fractured, crystalline rock aquifer at Gates Pond, Berlin, Massachusetts. Methods of investigation include aquifer‐pumping tests, long‐term hydrologic monitoring, fracture characterization, downhole heat‐pulse flow meter measurements, in situ extensometer testing, and earth tide analysis. A static conceptual model is developed from observations of depth‐dependent and anisotropic permeability that effectively compartmentalizes the aquifer as a function of foliation intensity. Superimposed on the static model is dynamic permeability as a function of hydraulic head in which transient bulk aquifer transmissivity is proportional to changes in hydraulic head due to hydromechanical coupling. The dynamic permeability concept is built on observations that fracture aperture changes as a function of hydraulic head, as measured during in situ extensometer testing of individual fractures, and observed changes in bulk aquifer transmissivity as determined from earth tides during seasonal changes in hydraulic head, with higher transmissivity during periods of high hydraulic head, and lower transmissivity during periods of relatively lower hydraulic head. A final conceptual model is presented that captures both the static and dynamic properties of the aquifer. The workflow presented here demonstrates development of a conceptual framework for building numerical models of complexly fractured, foliated, crystalline rock aquifers that includes both a static model to describe the spatial distribution of permeability as a function of fracture type and foliation intensity and a dynamic model that describes how hydromechanical coupling impacts permeability magnitude as a function of hydraulic head fluctuation. This model captures important geologic controls on permeability magnitude, anisotropy, and transience and therefor offers potentially more reliable history matching and forecasts of different water management strategies, such as resource evaluation, well placement, permeability prediction, and evaluating remediation strategies.  相似文献   
64.
65.
Being the largest gravitationally bound structures in the Universe, galaxy clusters are huge reservoirs of photons generated by the bremsstrahlung of a hot cluster gas. We consider the absorption of high-energy photons from distant cosmological gamma-ray sources by the bremsstrahlung of galaxy clusters. The magnitude of this effect is the third in order of smallness after the effects of absorption by the cosmic microwave background and absorption by the extragalactic background light. Our calculations of the effect of absorption by the bremsstrahlung of galaxy clusters have shown that this effect manifests itself in the energy range ~1–100 GeV and can be τ ~ 10?5 in optical depth.  相似文献   
66.
We describe the development of the tools and methods of 4.7-GHz band observations on RATAN-600 radio telescope and present a new design solution—a radiometric unit, and the development of an uncooled tuned receiver based on this unit and meant for operating in the “total power” radiometer mode.We discuss the design of the radio unit and the specificities of the radiometer design.We demonstrate the possibility of conducting observations in the total power radiometer mode at the theoretical sensitivity on time scales up to 10 seconds. The sensitivity of such a radiometer remains higher than that of a Dicke radiometer on time scales up to 100 seconds.  相似文献   
67.
Six tourmaline samples were investigated as potential reference materials (RMs) for boron isotope measurement by secondary ion mass spectrometry (SIMS). The tourmaline samples are chemically homogeneous and cover a compositional range of tourmaline supergroup minerals (primarily Fe, Mg and Li end‐members). Additionally, they have homogeneous boron delta values with intermediate precision values during SIMS analyses of less than 0.6‰ (2s). These samples were compared with four established tourmaline RMs, that is, schorl IAEA‐B‐4 and three Harvard tourmalines (schorl HS#112566, dravite HS#108796 and elbaite HS#98144). They were re‐evaluated for their major element and boron delta values using the same measurement procedure as the new tourmaline samples investigated. A discrepancy of about 1.5‰ in δ11B was found between the previously published reference values for established RMs and the values determined in this study. Significant instrumental mass fractionation (IMF) of up to 8‰ in δ11B was observed for schorl–dravite–elbaite solid solutions during SIMS analysis. Using the new reference values determined in this study, the IMF of the ten tourmaline samples can be modelled by a linear combination of the chemical parameters FeO + MnO, SiO2 and F. The new tourmaline RMs, together with the four established RMs, extend the boron isotope analysis of tourmaline towards the Mg‐ and Al‐rich compositional range. Consequently, the in situ boron isotope ratio of many natural tourmalines can now be determined with an uncertainty of less than 0.8‰ (2s).  相似文献   
68.
Solar System Research - A method has been developed for detecting impact orbits of asteroids in the confidence ellipsoid of the initial parameters of motion. The method consists in conditionally...  相似文献   
69.
X‐ray microcomputed tomography (μCT) is a useful means of characterizing cosmochemical samples such as meteorites or robotically returned samples. However, there are occasional concerns that the use of μCT may be detrimental to the organic components of a chondrite. Small organic compounds such as amino acids comprise up to ~10% of the total solvent extractable carbon in CM carbonaceous chondrites. We irradiated three samples of the Murchison CM carbonaceous chondrite under conditions akin to and harsher than those typically used during typical benchtop X‐ray μCT imaging experiments to determine if detectable changes in the amino acid abundance and distribution relative to a nonexposed Murchison control sample occurred. After subjecting three meteorite samples to ionizing radiation dosages between ~300 Gray (Gy) and 3 kGy with bremstrahlung X‐rays, we analyzed the amino acid content of each sample. Within sampling and analytical errors, we cannot discern differences in the amino acid abundances and amino acid enantiomeric ratios when comparing the control samples (nonexposed Murchison) and the irradiated samples. We conclude that a polychromatic X‐ray μCT experiment does not alter the abundances of amino acids to a degree greater than how well those abundances are measured with our techniques and therefore any damage to amino acids is minimal.  相似文献   
70.
Dmitriev  D. V.  Grinin  V. P.  Katysheva  N. A. 《Astronomy Letters》2019,45(6):371-383
Astronomy Letters - The formation of hydrogen emission lines in the magnetospheres of young stars is considered. The magnetosphere is assumed to be formed by a dipolar magnetic field whose axis is...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号